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Why Modeling?Why Modeling?
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Methods of ModelingMethods of Modeling
• Dynamic Modeling

– Based on equivalent circuit
– Dynamic behavior of Battery
– Requires many experimental data
– Simulation of TIME dependant variables

• CFD Modeling
– Stands for Computational Fluid Dynamics
– Solving transport equations numerically
– Simulation of battery in TIME and SPACE
– CFD can provide INPUTS for dynamic modeling
– Investigating the effect of different parameters on 
battery performance



LeadLead--Acid Battery ModelAcid Battery Model
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HistoryHistory

• Hirman Gu et al. (1987)
– Transport equations in each region
– Requires matching conditions at boundaries
– Off-diagonal blocks at boundaries
– Using a special routine for off-diagonal blocks
– Finite Difference Method

• W. B. Gu et al. (1997)
– Integrated coupled electrochemical model 
– No need for matching conditions at boundaries
– Finite Volume Method



LeadLead--Acid Battery ModelAcid Battery Model

H SO2 4

Region 4
Negative Electrode

Region 2
Reservoir

Region 1
Positive Electrode

Region 3
Separator

x=0 x=l

C
ur
re
nt
C
ol
le
ct
or

C
ur
re
nt
C
ol
le
ct
or

H SO2 4

H SO2 4

Pb

PbO2

PbSO4
PbSO4



HistoryHistory

• Hirman Gu et al. (1987)
– Transport eqs. in each region
– Requires matching conditions at boundaries
– Off-diagonal blocks at boundaries
– Using a special routine for off-diagonal blocks
– Finite Difference Method

• W. B. Gu et al. (1997)
– Integrated coupled electrochemical model 
– No need for matching conditions at boundaries
– Finite Volume Method



LeadLead--Acid Battery ModelAcid Battery Model

H SO2 4

Region 4
Negative Electrode

Region 2
Reservoir

Region 1
Positive Electrode

Region 3
Separator

x=0 x=l

C
ur
re
nt
C
ol
le
ct
or

C
ur
re
nt
C
ol
le
ct
or

H SO2 4

H SO2 4

Pb

PbO2

PbSO4
PbSO4



HistoryHistory
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Coupled Electrochemical and Transport Coupled Electrochemical and Transport 
Processes in LeadProcesses in Lead--Acid BatteriesAcid Batteries

– Conservation of Charge in Solid

– Conservation of Charge in Liquid

– Species (ionic) Conservation

– Conservation of Momentum

– Conservation of Mass



OneOne--Dimensional AssumptionsDimensional Assumptions
– Conservation of Charge in Solid

– Conservation of Charge in Liquid

– Species (ionic) Conservation

– Conservation of Momentum

– Conservation of Mass

0



Governing Equations (1Governing Equations (1--D)D)
– Conservation of Charge in Solid

– Conservation of Charge in Liquid

– Species (ionic) Conservation



Boundary ConditionsBoundary Conditions

• Potential in Solid

• Potential in Liquid

• Acid Concentration



Initial ConditionsInitial Conditions

• Initial acid concentration
c=c0

• Initial potential in solid and liquid
1. Solve steady state equations.

2. Solve the whole system up to a small time 
step (i.e. 10-4 sec.)

0

and



Numerical DifficultiesNumerical Difficulties
• All equations are highly non-linear
• Non-linear source terms 

• The system of equations is highly stiff

• All equations are highly coupled together
• All boundary conditions are of Newman type 
(singularity occurs)



Numerical SchemeNumerical Scheme
• Method of use: Keller-Box
• Specifications

– Delta formulation
– Implicit
– 2nd-order accurate in TIME and SPACE

• Advantages
– Calculation of the functions and their derivative 
simultaneously

– Leads to a block tridiagonal matrix
– Can be used on nonuniform grid
– Large band of stability
– Ease of programming



Numerical ProcedureNumerical Procedure

• Convert the system to first order system of 
Equations

• Linearization of the system  
• Solve the system iteratively using Newton’s 
iteration method



Converting to 1Converting to 1--st order Systemst order System

• Defining



The System of EquationsThe System of Equations

• We have



DiscretizationDiscretization

• Time independent equations are differenced 
at location i-1/2 and time level n

• Time dependent equations are differenced at 
location i-1/2 and time level n-1/2
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Block Block tridiagonaltridiagonal systemsystem

[B][C]
[A][B][C]
[A][B][C]

- - -
[A][B]

[X1]
[X2]
[X3]   =
- - -
[Xn]

[RHS1]
[RHS2]
[RHS3] 
- - -

[RHSn]

[Xn]   =



Simulated SampleSimulated Sample

• H. Gu et al. (1987)
– Discharge (I=-340 mA)
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Potential in LiquidPotential in Liquid
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Potential in SolidPotential in Solid
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Simulated Acid ConcentrationSimulated Acid Concentration
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Charge in BatteryCharge in Battery

Ti
m
e

x/L

C
ha

rg
e

(k
C

/c
m

3 )

0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

t = 60 sec (Present Work)
t = 60 sec (H. Gu et al. 1987)
t =105 sec (Present Work)
t =105 sec (H. Gu et al. 1987)



Simulated Cell VoltageSimulated Cell Voltage
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Effect of over potential on cell voltageEffect of over potential on cell voltage

Time (sec)

C
el

lV
ol

ta
ge

(V
)

0 20 40 60 80 100 120
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Constant ∆UPbO2
Using Bode relation for ∆UPbO2



Effect of over potentialEffect of over potential
(Acid Concentration)(Acid Concentration)
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ConclusionsConclusions

• Transport equations of battery are solved 
using Keller-Box method

• The results show good agreement with 
previous calculations

• This model can be used for simulation and 
design of batteries
– The model costs less compared to experiment
– Modeling is much faster than experiment



Future worksFuture works

• Simulating more complicated models 
including other phenomena
– Oxygen evolution in VRLA
– Coupling energy equation for investigating the 
effect of temperature on battery behavior

• Simulation of two-dimensional model
• Obtaining necessary parameters for 
dynamic modeling






