5000

Niru Battery Manufacturing Co.

One-Dimensional Modeling of Lead-Acid Batteries Using CFD

Vahid Esfahanian Associate Professor Farschad Torabi Ph. D. Candidate

Mechanical Engineering Dept. Vehicle, Fuel and Environment Research Institute

Methods of Modeling

- Dynamic Modeling
 - Based on equivalent circuit
 - Dynamic behavior of Battery
 - Requires many experimental data
 - Simulation of TIME dependant variables
- CFD Modeling
 - Stands for Computational Fluid Dynamics
 - Solving transport equations numerically
 - Simulation of battery in TIME and SPACE
 - CFD can provide *INPUTS* for dynamic modeling
 - Investigating the effect of different parameters on battery performance

Lead-Acid Battery Model

Region 1 Positive Electrode

Region 2 Reservoir Region 3 Region 4 Separator Negative Electrode

x=l

x=0

History

- Hirman Gu et al. (1987)
 - Transport equations in each region
 - Requires matching conditions at boundaries
 - Off-diagonal blocks at boundaries
 - Using a special routine for off-diagonal blocks
 Finite Difference Method
- W. B. Gu et al. (1997)
 - Integrated coupled electrochemical model
 - No need for matching conditions at boundaries
 - Finite Volume Method

Lead-Acid Battery Model

Region 1 Positive Electrode

Region 2 Reservoir Region 3 Region 4 Separator Negative Electrode

x=l

x=0

History

- Hirman Gu et al. (1987)
 - Transport eqs. in each region
 - Requires matching conditions at boundaries
 - Off-diagonal blocks at boundaries
 - Using a special routine for off-diagonal blocks
 Finite Difference Method
- W. B. Gu et al. (1997)
 - Integrated coupled electrochemical model
 - No need for matching conditions at boundaries
 - Finite Volume Method

Lead-Acid Battery Model

Region 1 Positive Electrode

Region 2 Reservoir Region 3 Region 4 Separator Negative Electrode

x=l

x=0

History

- Hirman Gu et al. (1987)
 - Transport eqs. in each region
 - Require matching conditions at boundaries
 - Off-diagonal blocks at boundaries
 - Using a special routine for off-diagonal blocks
 Finite Difference Method
- W. B. Gu et al. (1997)
 - Integrated coupled electrochemical model
 - No need for matching conditions at boundaries
 - Finite Volume Method

Coupled Electrochemical and Transport Processes in Lead-Acid Batteries - Conservation of Charge in Solid $\nabla \cdot (\sigma^{\text{eff}} \nabla \phi_s) - Aj = 0$ - Conservation of Charge in Liquid $\nabla \cdot (k^{\text{eff}} \nabla \phi_l) + \nabla \cdot (k_D^{\text{eff}} \nabla (\ln c)) + Aj = 0$ $\frac{\partial (\epsilon c)}{\partial t} + v \cdot \nabla c = \nabla \cdot (D^{\text{eff}} \nabla c) + a_2 \frac{Aj}{2F}$ $-\frac{\partial v}{\partial t} + v \cdot \nabla v = -\frac{1}{\rho} \nabla p + \nabla \cdot (\nu \nabla v) + g[1 + \beta(c - c_{\circ})] + \frac{\nu}{K} (\epsilon v)$ - Conservation of Mass $\nabla \cdot v = 0$

One-Dimensional Assumptions

- Conservation of Charge in Solid $\nabla \cdot (\sigma^{\text{eff}} \nabla \phi_s) - Aj = 0$

- Conservation of Charge in Liquid $abla \cdot (k^{\mathrm{eff}}
abla \phi_l) +
abla \cdot (k_D^{\mathrm{eff}}
abla (\ln c)) + Aj = 0$

 $-\frac{Species (ionic) Conservation}{\partial (\epsilon c)} + v \nabla c = \nabla \cdot (D^{\text{eff}} \nabla c) + a_2 \frac{Aj}{2F}$

 $- \underbrace{\begin{array}{c} \text{Conservation of Momentum} \\ \hline \frac{\partial v}{\partial t} + v \cdot \nabla v = -\frac{1}{\rho} \nabla p + \nabla \cdot (\nu \nabla v) + g[1 + \beta(c - c_{\circ})] + \frac{\nu}{K}(\epsilon v) \end{array}}_{K}$

- Conservation of Mass

Governing Equations (1-D)

- Conservation of Charge in Solid

$$\frac{\partial}{\partial x} \left(\sigma \frac{\partial \phi_s}{\partial x} \right) = +Aj$$

- Conservation of Charge in Liquid

$$\frac{\partial}{\partial x} \left(k \frac{\partial \phi_l}{\partial x} \right) = -Aj - \frac{\partial}{\partial x} \left(\frac{k}{c} \frac{\partial c}{\partial x} \right)$$

Species (ionic) Conservation

$$\epsilon \frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right) + a_2 \frac{Aj}{2F} - c \frac{\partial \epsilon}{\partial t}$$

Boundary Conditions

 $-\sigma^{\text{eff}} \frac{\partial \phi_s}{\partial r} = I$

Potential in Solid

$$\phi_s = 0, V$$
 or

Potential in Liquid $\frac{\partial \phi_l}{\partial x} = 0$ Acid Concentration $\frac{\partial c}{\partial x} = 0$

Initial Conditions

Initial acid concentration

 $c = c_0$

Initial potential in solid and liquid
1. Solve steady state equations.

 $\frac{\partial}{\partial x} \left(\sigma \frac{\partial \phi_s}{\partial x} \right) = +Aj \quad \text{and} \quad \frac{\partial}{\partial x} \left(k \frac{\partial \phi_l}{\partial x} \right) = -Aj - \frac{\partial}{\partial x} \left(\frac{k}{c} \frac{\partial c}{\partial x} \right)$

 Solve the whole system up to a small time step (i.e. 10⁻⁴ sec.)

Numerical Difficulties

- All equations are highly non-linear
- Non-linear source terms

$$j = i_{\circ} \left(\frac{c}{c_{\text{ref}}}\right)^{\gamma} \left\{ \exp\left(\frac{\alpha_{a}F}{RT}(\phi_{s} - \phi_{l} - \Delta U_{\text{PbO}_{2}})\right) - \exp\left(\frac{\alpha_{c}F}{RT}(\phi_{s} - \phi_{l} - \Delta U_{\text{PbO}_{2}})\right) \right\}$$

- The system of equations is highly stiff
- All equations are highly coupled together
- All boundary conditions are of Newman type (singularity occurs)

Numerical Scheme

- Method of use: Keller-Box
- Specifications
 - Delta formulation
 - Implicit
 - 2nd-order accurate in TIME and SPACE
- Advantages
 - Calculation of the functions and their derivative simultaneously
 - Leads to a block tridiagonal matrix
 - Can be used on nonuniform grid
 - Large band of stability
 - Ease of programming

Numerical Procedure

- Convert the system to first order system of Equations
- Linearization of the system
- Solve the system iteratively using Newton's iteration method

Converting to 1-st order System

Defining

$\frac{\partial \phi_s}{\partial x} =$	= u
$\frac{\partial \phi_l}{\partial x} =$	= <i>v</i>
$\frac{\partial c}{\partial x} =$	= W

The System of Equations

We have

 $\begin{array}{l} \displaystyle \frac{\partial(\sigma^{\mathrm{eff}}u)}{\partial x} &= +Aj \\ \displaystyle \frac{\partial\phi_s}{\partial x} &= u \\ \displaystyle \frac{\partial(k^{\mathrm{eff}}v)}{\partial x} &= -Aj - \frac{\partial}{\partial x}(\frac{kw}{c}) \end{array}$ $\frac{\partial \phi_l}{\partial x} \\
\frac{\partial c}{\partial t} \\
\frac{\partial c}{\partial x}$ $= \frac{\partial (D^{\text{eff}}w)}{\partial x} + (a_2 - a_1c)\frac{Aj}{2F}$ = w

Discretization

• Time independent equations are differenced at location *i*-1/2 and time level *n*

• Time dependent equations are differenced at location *i*-1/2 and time level *n*-1/2

Block tridiagonal system

δ ϕ_s $\delta \frac{\partial \phi}{\partial \phi}$ [X₁] [RHS₁] [B][C] ∂x $[X_2]$ [RHS₂] [A][B][C] δ ϕ_l [X₃] [A][B][C] [RHS₃] = $\partial \phi_i$ $[X_n]$ = δ ∂x [A][B] [X_n] [RHS_n] δ C $\frac{\partial c}{\partial x}$ δ

Simulated Sample

H. Gu et al. (1987) – Discharge (*I=-340* mA)

Potential in Liquid

Potential in Solid

Simulated Acid Concentration

Simulated Cell Voltage

Effect of over potential on cell voltage

Conclusions

- Transport equations of battery are solved using Keller-Box method
- The results show good agreement with previous calculations
- This model can be used for simulation and design of batteries
 - The model costs less compared to experiment
 - Modeling is much faster than experiment

Future works

- Simulating more complicated models including other phenomena
 - Oxygen evolution in VRLA
 - Coupling energy equation for investigating the effect of temperature on battery behavior
- Simulation of two-dimensional model
- Obtaining necessary parameters for dynamic modeling

